Astronauts can only travel so far in existing space suits. What will it take to see the universe?

The Deep-Space Suit
Nick Kaloterakis
An astronaut can die many ways, but decompression is one of the more gruesome. A punctured space suit means a race to sanctuary, before the envelope of pure oxygen surrounding the body bleeds away and hypoxia causes the person to black out. Rapid pressure loss isn’t explosive, but it’s ugly: Water in the body begins to vaporize and tries to escape, the lungs collapse, and circulation shuts down.
No one’s dying today, though, at least not on Phobos. The suit he’s wearing isn’t a pressurized balloon. It’s the reverse, really—a squeeze suit, with a lattice of smart-memory alloys that binds it to the body, replacing an oxygen cushion with direct, mechanical counterpressure. The result is formfitting and nimble; it requires less energy to move andincreases an astronaut’s range on foot. And in the event of a rupture, the suit remains viable: It can be patched on the spot with a space explorer’s equivalent of an Ace bandage, its own shape-memory alloys pulling tight to seal the breach.
By the time the patch is in place, the alarms have stopped. Epidermal biosensors and path-planning algorithms have shortened the astronaut’s trek across the surface, from six miles out to just over four. He’ll call mission control to argue against this shortcut when his heart rate settles. A nasty bruise isn’t going to kill him. And he didn’t travel 100 million miles from home to turn back now.
Even today’s most sophisticated suits are limited to low-Earth orbit—and one was never designed to leave the spacecraft. NASA began using the Advanced Crew Escape Suit (ACES) after the 1986 Challenger disaster to protect shuttle astronauts during launch and reentry. But it was barely fit for duty. Since the shuttle’s controls weren’t built for suited operation, pilots routinely flew without their bulky gloves, leaving them vulnerable to a rapid pressure leak. The suit’s life-support system was ad hoc, with hoses taped down throughout the cabin. Now that the shuttle program has ended, astronauts wear the Russian equivalent of the ACES, introduced in 1973.
NASA’s other suit, the Extravehicular Mobility Unit (EMU), is less of a garment than a multimillion-dollar spaceship packed with liquid-cooled plumbing. Worn during space walks, it first touched the void in 1983; the majority of its fabrics were cutting-edge during the Cold War. Though the suit’s manufacturer, ILC Dover, has been experimenting with self-healing polymers, and though NASA has promoted the development of advanced materials such as aerogels for ultrathin thermal insulation, those technologies haven’t yet migrated into the EMU.
The next era of spaceflight shouldn’t have to make do with hand-me-downs, not with the wealth of materials and designs incubating in labs around the world. With the impending private takeover of orbital and suborbital launches, and the first echoes of a mandate to land humans on Mars, there will be many more people going to space, some of them traveling vast distances. They deserve suits that not only keep them safe, but also live up to their ambitions.
THE LAUNCH SUIT
The first new suits will be streamlined successors to ACES, only they won’t be designed for steely-eyed missile men, but for a new cohort of pilots and passengers who paid hundreds of thousands of dollars to be whisked into space. Called intravehicular activity or launch-entry suits, these are the drop-down oxygen masks of the space industry, devices whose true functionality—which includes pressurization and some measure of life support—kicks in during emergencies.In its initial contract with a suit maker, SpaceX stipulated that the pressure garment must look “badass.”As designers deal for the first time with clients other than NASA, they are being forced to take on new challenges. In an initial contract with suit-maker Orbital Outfitters, SpaceX stipulated that the pressure garment must look “badass.” “You don’t get that sort of verbiage in government contracts,” says Chris Gilman, chief designer at Orbital Outfitters. “I love it.” There are obstacles, however, to badass space suit design. A launch-entry suit is ungainly, an oversize one-piece embedded with rigid interfaces for the helmet and gloves, and enough room to inflate, basketball-like, when pressurized—especially in the seat, so an astronaut isn’t forced to stand up. Gilman plans to counter this “baggy butt” with tactical stitching. Ted Southern, co-founder of Final Frontier Design, which secured initial funding for its 3G Suit through the Kickstarter crowd-funding platform, hopes to use patterning as fashion designers always have—to improve fit. “I honestly think that’s the key,” he says. “The more anthropomorphic it is, the cooler it looks.”
This is the new business of space suit design: to satisfy the needs of commercial customers, whether that means cramming survivability into a svelter package, or coming up with novel, cost-saving innovations in structure and materials selection. The 3G suit—the first of which is slated for delivery as early as January to the Spanish aerospace start-up zero2infinity—eliminates some metal components. Final Frontier is considering replacing others with high-performance plastic. For the IS3 suit that Orbital Outfitters is providing to XCOR Aerospace for use in its suborbital two-seater, the Lynx, the company is exploring disposable elements. Components such as the bladder layer that seals the suit could be swapped out before each launch.
No comments:
Post a Comment